
N-Way Analysis of Variance

1 Introduction

A good example when to use a n-way ANOVA is for a factorial design. A factorial design is an efficient

way to conduct an experiment. Each observation has data on all factors, and we are able to look at one

factor while observing different levels of another factor. Table 1 shows an analysis of variance table for a

three-factor design. This can obviously be extended to more factors or be used for two factors.

Table 1: Two-Way ANOVA
Source DF SS Mean Square F
Total rab - 1 SS Total
Factor A a - 1 SS(A) MS(A) MS(A)/MSE
Factor B b - 1 SS(B) MS(B) MS(B)/MSE
Factor C c - 1 SS(C) MS(C) MS(C)/MSE
A*B Interaction (a-1)(b-1) SS(AB) MS(AB) MS(AB)/MSE
B*C Interaction (b-1)(c-1) SS(BC) MS(BC) MS(BC)/MSE
A*B*C Interaction (a-1)(b-1)(c-1) SS(ABC) MS(ABC) MS(ABC)/MSE
Error abc(r-1) SSE MSE

2 Analysis of Variance Preparation

This example will use the dataset npk (Nitrogen - N, Phosphate - P, Potassium - K) that is available in R

with the MASS library (Modern Applied Statistics with S). The first thing to do with analysis of variance

is to inspect the data to ensure it is formatted and designed properly. Inspecting the balance of the design

can be done with the following R code. This shows that the design is balanced and the analysis not require

additional considerations.

>replications(yield ~ N*P*K, data=npk);

N P K N:P N:K P:K N:P:K

12 12 12 6 6 6 3

There are several ways to graphically review the data. A good graphical approach is to create side-by-side
boxplots of each of the experimental combinations. Figure 1 show the boxplot for the npk data.

Because the npk data has three factors each with two factor levels the interactions should be reviewed.

A good way to accomplish this is graphically using an interaction plot. Figure 2 shows the output from the

following R code. This code is a concise way to display two interaction plots for the nitrogen and potassium

and the nitrogen and phosphate.
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Figure 1: Box Plot of Experimental Combinations

>with(npk, {

interaction.plot(N, P, yield, type="b", legend="T",

ylab="Yield of Peas", main="Interaction Plot", pch=c(1,19) )

interaction.plot(N, K, yield, type="b", legend="T",

ylab="Yield of Peas", main="Interaction Plot", pch=c(1,19))

}

);

It is generally a good idea to look at the basic summary statistics for the data. This will give a researcher

a good idea what to expect from the data and to identify any observation that may be outliers or may have

suffered from data input errors. The following code provides table summaries of each of the factors compared

to the other factors.

with(npk, tapply(yield, list(N,P), mean));

with(npk, tapply(yield, list(N,K), mean));

with(npk, tapply(yield, list(P,K), mean));

> with(npk, tapply(yield, list(N,P), mean));

0 1

0 51.71667 52.41667

1 59.21667 56.15000

> with(npk, tapply(yield, list(N,K), mean));

0 1

0 52.88333 51.25000

1 60.85000 54.51667

> with(npk, tapply(yield, list(P,K), mean));

0 1
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0 57.60000 53.33333

1 56.13333 52.43333

3 Analysis of Variance

Once the data has been reviewed and a researcher has a complete understanding of the design and scope of

the data then the ANOVA table can be produced. Analysis of variance in R is quite simple and can generally

be done using only a couple of lines of code. The following code produces an analysis of variance table and

shows the difference in means using the Tukey HSD (Honestly Significant Difference) test. Additionally,

the difference and the family-wise confidence levels can be easily graphed as seen in Figures 3 and 4. The

following code produces quite a bit of output showing the differences and the confidence intervals for all

comparisons of means.

>npk.aov <- aov(yield ~ N*P*K, data=npk);

>TukeyHSD(npk.aov, conf.level=.99);

>plot(TukeyHSD(npk.aov, conf.level=.99));

At this point the analysis of variance table can be produced. We can look at the output a few different

ways. First we can look at the traditional ANOVA table to determine the significance of the main effects

and the interactions (interactions are identified by a colon ‘:’). A second way to look at the ANOVA output

is by looking at treatment effects. The output from the below code shows that the mean when all factors

are set to zero is 51.4333. From there we can see the effect of the other variables.

>summary(npk.aov);

Df Sum Sq Mean Sq F value Pr(>F)

N 1 189.3 189.28 6.161 0.0245 *

P 1 8.4 8.40 0.273 0.6082

K 1 95.2 95.20 3.099 0.0975 .

N:P 1 21.3 21.28 0.693 0.4175

N:K 1 33.1 33.13 1.078 0.3145

P:K 1 0.5 0.48 0.016 0.9019

N:P:K 1 37.0 37.00 1.204 0.2887

Residuals 16 491.6 30.72

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

>options("contrasts");

>summary.lm(npk.aov);

Call:

aov(formula = yield ~ N * P * K, data = npk)
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Residuals:

Min 1Q Median 3Q Max

-10.133 -4.133 1.250 3.125 8.467

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 51.4333 3.2002 16.072 2.7e-11 ***

N1 12.3333 4.5258 2.725 0.015 *

P1 2.9000 4.5258 0.641 0.531

K1 0.5667 4.5258 0.125 0.902

N1:P1 -8.7333 6.4004 -1.365 0.191

N1:K1 -9.6667 6.4004 -1.510 0.150

P1:K1 -4.4000 6.4004 -0.687 0.502

N1:P1:K1 9.9333 9.0515 1.097 0.289

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.543 on 16 degrees of freedom

Multiple R-squared: 0.4391,Adjusted R-squared: 0.1937

F-statistic: 1.789 on 7 and 16 DF, p-value: 0.1586

4 Final Diagnostics

Finally, diagnostics should be conducted to ensure that ANOVA is a proper fit and that all of the basic

assumptions are met. These primarily include normality of data and homogeneity of variance. A good way

to visually determine if the data are normally distributed is by using a Q-Q plot as seen in Figure 5. If the

point follow Q-Q line then data follow a normal distribution if there is a lot of deviation from the line then

the data should be inspected further. Additionally, the Shapiro-Wilk test for normality is another good way

to identify (using a null hypothesis of normal data) whether or not the data is from a normal distribution.

The homogeneity of variance can be determined using the Bartlett Test of Homogeneity (seen in the output

below) of Variances or the Fligner-Killeen Test of Homogeneity of Variances.

plot(npk.aov);

plot.design(yield~N*P*K, data=npk);

qqnorm(npk$yield); qqline(npk$yield, col=4);

##Shapiro-Wilk Normality Test

by(npk$yield, npk$N, shapiro.test);

by(npk$yield, npk$P, shapiro.test);

by(npk$yield, npk$K, shapiro.test);

> by(npk$yield, npk$N, shapiro.test);

npk$N: 0

Shapiro-Wilk normality test
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data: dd[x, ]

W = 0.9578, p-value = 0.7522

-------------------------------------------------------

npk$N: 1

Shapiro-Wilk normality test

data: dd[x, ]

W = 0.9642, p-value = 0.8414

> by(npk$yield, npk$P, shapiro.test);

npk$P: 0

Shapiro-Wilk normality test

data: dd[x, ]

W = 0.9629, p-value = 0.824

-------------------------------------------------------

npk$P: 1

Shapiro-Wilk normality test

data: dd[x, ]

W = 0.9574, p-value = 0.7456

> by(npk$yield, npk$K, shapiro.test);

npk$K: 0

Shapiro-Wilk normality test

data: dd[x, ]

W = 0.9721, p-value = 0.9313

-------------------------------------------------------

npk$K: 1

Shapiro-Wilk normality test

data: dd[x, ]

W = 0.9189, p-value = 0.2766

> bartlett.test(npk$yield ~ npk$N);

Bartlett test of homogeneity of variances

data: npk$yield by npk$N

Bartlett’s K-squared = 0.0577, df = 1, p-value = 0.8102
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> bartlett.test(npk$yield ~ npk$P);

Bartlett test of homogeneity of variances

data: npk$yield by npk$P

Bartlett’s K-squared = 0.1555, df = 1, p-value = 0.6933

> bartlett.test(npk$yield ~ npk$K);

Bartlett test of homogeneity of variances

data: npk$yield by npk$K

Bartlett’s K-squared = 3.0059, df = 1, p-value = 0.08296

fligner.test(npk$yield ~ npk$N);

fligner.test(npk$yield ~ npk$P);

fligner.test(npk$yield ~ npk$K);
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Figure 2: Interaction Plot of Factor Levels
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Figure 3: Interaction Plot of Factor Levels
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Figure 4: Interaction Plot of Factor Levels
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Figure 5: Normal Q-Q Plot
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